Multi-rate Hidden Markov Models for Monitoring of Machining Tool Wear

نویسندگان

  • Özgür Çetin
  • Mari Ostendorf
چکیده

This paper introduces a multi-rate hidden Markov model (multi-rate HMM) for multi-scale stochastic modeling of non-stationary processes. The multi-rate HMM decomposes the process variability into scale-based components, and characterizes both the intra-scale temporal evolution of the process and the inter-scale interactions. Scales are organized in a hierarchical manner from coarser scales to finer ones, allowing for the efficient representation of both longand short-term context information simultaneously. Computationally efficient probabilistic inference and parameter estimation algorithms for the multi-rate HMM are given. We apply these models to the prediction of machining tool wear which exhibit both long-range dependence and multi-scale dynamics. A multi-category toolwear prediction system architecture is presented for modeling the wear progress over multiple time scales during a tool’s lifetime. The classification results on challenging titanium milling tasks show that multi-rate HMMs outperform HMMs in terms of both accuracy and confidence of predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES

On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...

متن کامل

Optimization of Spindle loading and Tool Wear for CNC Turning Machine by Using Intelligent System

Intelligent knowledge based system (IKBS) is developed for optimizing dry CNC turning process using Taguchi method, CNC Machine, EN19 steel as the work piece material, andCutting Insert. Tool wear and spindle loading which are the machining parameters, spindle speed, feed rate, and depth of cut, areoptimized through the intelligent knowledge based system (IKBS). The experimental CNC turning mac...

متن کامل

Optimization of Spindle loading and Tool Wear for CNC Turning Machine by Using Intelligent System

Intelligent knowledge based system (IKBS) is developed for optimizing dry CNC turning process using Taguchi method, CNC Machine, EN19 steel as the work piece material, andCutting Insert. Tool wear and spindle loading which are the machining parameters, spindle speed, feed rate, and depth of cut, areoptimized through the intelligent knowledge based system (IKBS). The experimental CNC turning mac...

متن کامل

Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the...

متن کامل

Tool Condition Monitoring Based on an Adaptive Neurofuzzy Architecture

Metal cutting operations constitute a large percentage of the manufacturing activity. One of the most important objectives of metal cutting research is to develop techniques that enable optimal utilization of machine tools, improved production efficiency, high machining accuracy and reduced machine downtime and tooling costs. Machining process condition monitoring is certainly the important mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004